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What is Big Data?

Big data is defined as collections of datasets whose volume, velocity or variety is so large that it is
difficult to store, manage, process and analyze it using traditional databases and data processing tools.
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Today, Big Data is one of the hottest buzzword around.

But Big Data poses new challenges
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Big Data Challenges

In the recent years, there has been an exponential growth in the both structured and unstructured data generated
by information technology, industrial, healthcare, Internet of Things, and other systems.

UNSTRUCTURED
HIGH
MEDIUM
o W i
Archives Docs ’Bus:ness\ Media Social Public ( “Data” ~ K “Machine \ Sensor
\ Apps , Networks Web Slorages Log Dala Data
B complexity [ Velocity .Vanety Volume
- --TTTT = T~
[ Archives r?;f“i\ Media i <~ Data Storages SN
( '\ Scanned documents, statements, \\c _/: Y / Images, video, audio etc. \ :0 =+ RDBMS, NoSQL, Hadoop, file systems  /
- medical records, e-mails etc.. Sig ) ete PR
— -~ - - - -
—— i o e —
[ ) s - 7, ~-o
Docs ~ 1 Social Networks A Machine Log Data ~
XLS, PDF, CSV, HTML, JSON etc. | "/ | Twitter, Facebook, Google+, ( N Application logs, event logs, server 7
e V LinkediIn etc. < A I data, CDRs, clickstream data etc. A
- --<_ ~~ o -
7 ’«' ~ . ~ ~ . i - -
( (| Business Apps \ ~1 Public Web A Sensor Data
N L CRM, ERP systems, HR, project o AN A Wikipedia, news, weather, public (((e) 1) Smart electric meters, medical
\i —) management etc. _ s’ L | finance etc . . devices, car sensors, road cameras
~— -

N e — e ——— —_ etc.

@Eduardo Rodrigues



Big Data

Lisbon School
' ;:‘ : ! of Economics

& Management

Bi Architecture

Big Data analytics is a relatively modern field of data science that explores
how large data sets can be broken down, processed and analysed in order to
systematically glean insights and information from them.
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Companies with traditional Bl solutions are not
able to fully maximize the value of Big Data.

Conventional data processing solutions are not very efficient
with respect to capturing, storing and analysing big data.
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Bi Architecture

Do we really need something new
here? Certainly, YES
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Big Data is also very important for operational systems

« Example: Geographic Information Systems and Traffic Analysis

Crowdsourcing Sensing Map data

Real time traffic info

Travel time forecast/nowcast
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Data Lake Architecture
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Data Lake Architecture

* Ingest data in its native state
* No transformation or override
+ Although raw, it needs some organization (by folders<subject area, data source, period, market, ...)

» Users should not be granted access to raw layer (data not ready to use => It requires knowledge and
tools to be consumed)

+ Similar to the staging area of DW architecture
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Data Lake Architecture
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» The main objective of this layer is to improve performance in data transfer from Raw to Curated

tional in most implementations. But if anticipated that DL will grow fast, it shall be considered

» Purpose for data is still not yet fully known

* While in Raw, data is stored in its native format, in Standardized we choose the format that fits best for
leansing. The structure is the same as in the previous layer but it may be partitioned to lower grain if

Standardized | ELCT ClLeansed

Sandbox

Application

Master Data
il

Orchestration (Applications)

—

&

OLAP

Offload

I:>

:>

Advance analytics

Operationalized Data
Science

@Eduardo Rodrigues



L)
Lisbon School
szc === Big Data
& Management

Universidade de Lisboa

Data Lake Architecture

 Also called Curated Layer / Conformed Layer. Cleansing and transformations happen before this layer
* Here we already know the purpose of the data

» Data is transformed into consumable data sets and it may be stored in files or tables. The aim is to structure and
uniform the way files/tables are stored in terms of context, encoding, format, data types and content (i.e. strings).
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Data Lake Architecture
 Also called the Trusted Layer/Secure Layer/Production Layer, it is sourced from Cleansed layer
and enforced with any needed business logic

» These might be surrogate keys, row level security or anything else that is specific of the application
consuming this layer.

« “The structure of the data will remain the same, as in Cleansed.
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Data Lake Architecture

» Another layer that might be considered optional, is meant for advanced analysts’ and data
scientists’ work

» Here they can carry out their experiments when looking for patterns or correlations.

» Whenever you have an idea to enrich your data with any source from the Internet, Sandbox is
the proper place for this.
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Data Lake Architecture

This area may be used to offload some time/resource consuming ETL processes to the Data Lake,
which might be cheaper and faster.

s 1
Orchestration (Data Lake) . o Orchestration (Applications)

Data Sources: <‘5

&5 Relational db
i) Streaming Standardized | ELT CLeansed Offload <E‘>
EDW
%) Social media

Web scrapping

Vo) o Sgn i l:>
i>

OLAP

Photos

Sandbox Application Advance analytics

| Word documents

Operationalized Data
Science

tm) Pdf documents
Master Data

- e il

Security

@Eduardo Rodrigues



L)
oy Lisbon School
. of Economics l a a
R ' ’ & Management

Universidade de Lisboa

Data Lake Architecture

» As data is being pushed from the Raw Layer, through the Cleansed to the Application and Sandbox
layer, a tool to orchestrate the flow is needed.

» Mostlikely, companies will need to apply transformations. An orchestration tool capable will be
needed.
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Data Lake Architecture

Obijectives

v" Plan the structure based on optimal data retrieval
v" Avoid a chaotic, unorganized data swamp

Common ways to organize the data:

Time Partitioning
Year/Month/Day/Hour/Minute

Subject Area

Security Boundaries
Department
Business unit

etc.

Downstream App/Purpose

Data Retention Policy
Temporary data
Permanent data

Applicable penod (ex: project litetime)

etc

Business Impact / Criticality
High {HBI)
Medium {MBI)
Low (LBI)
etc.,

Owner / Steward / SME

Probability of Data Access
Recent fcurrent data
Histoncal data

etc.

Confidential Classification
Public information
Internal use anly
Supplier/partner confidential
Personally identifiable information (Pl)
Sensitive - financia
Sensitive - intellectual property

etc..
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Paradigm Shifts - More data being captured and leveraged

Combine all information
available for clients....

... 10 carry on complex queries to add
attributes to clients
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Paradigm Shifts — Reduce effort to leverage data

— Schema on load
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Storage —
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e Schema on Read, rather than Schema on Write

Traditional Schema on Write
datawarehouse

design

The blg data Schema on Read
approach
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Requirements gathering and structuring

v

Formal data modeling process

Y

Database schema

v

Database use based on the predefined schema

Collecting large amounts of data with
locally defined structures (e.g., using JSON/XML)

Y

Storing the data in a data lake

Y

Analyzing the stored data to identify
meaningful ways to structure it

v

Structuring and organizing the data
during the data analysis process
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Data Lake Architecture ...

Obijectives

not a Data Swamp

v" Plan the structure based on optimal data retrieval
v" Avoid a chaotic, unorganized data swamp

Common ways to organize the data:

Time Partitioning
Year/Month/Day/Hour/Minute

Subject Area

Security Boundaries
Department
Business unit

etc.

Downstream App/Purpose

Data Retention Policy
Temporary data
Permanent data

Applicable penod (ex: project litetime)

etc

Business Impact / Criticality
High {HBI)
Medium {MBI)
Low (LBI)
etc.,

Owner / Steward / SME

Probability of Data Access
Recent fcurrent data
Histoncal data

etc.

Confidential Classification
Public information
Internal use anly
Supplier/partner confidential
Personally identifiable information (Pl)
Sensitive - financia
Sensitive - intellectual property

etc..
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Paradigm Shifts — Reduce effort to leverage data

TRADITIONAL APPRCOACH BIG DATA APPROACH
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Paradigm Shifts — Data leads the way

TRADITIONAL APPROACH

Start with hypothesis and
test against selected data

Explore all data and
identity correlation:
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Big Data

Paradigm Shifts — Data leads the way

Hypothesis based correlation
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Weird correlation
Moon Metrics

The average value of deals closed by salespeople over nine years in one
study peaked during a new moon at more than twice the value during a
half moon and 43% higher than the value during a full moon,
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Source: InsideSales,com study of 1,675 deals In various industries,
welghted toward businoss services, technology and financlal services The Wall Street Journal
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Paradigm Shifts — Leverage data as it is captured

TRADITIONAL APPROACH BIG DATA APPROACH

Data f I | 1 sight

Analyze data after it's been
processed and landed in a warehouse
or mart
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Paradigm Shifts — Leverage data as it is captured
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Data Lake Architecture ... Datawarehouse s still there!

Orchestration (Data Lake) : Orchestration (Applications)

Data Sources: Archive
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Streaming Standardized | ELCT ClLeansed
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Data Store

10101
01010
00100

DATA LAKE

It can capture and retain unstructured,
semi-structured, and structured data in its
raw format. A Data Lake stores all types of
data, irrespective of the source and
structure.

DATA WAREHOUSE

It can capture and retain only structured
data. A Data Warehouse stores data in
quantitative metrics with their attributes.
Data is transformed and cleansed.

Schema Definition
V)
ol h
ol

Typically, the schema is defined after data
is stored. This offers high agility and data
capture quite easily, but it requires work
at the end of the process (schema-on-
read).

Typically, a schema is defined prior to
when data is stored. It requires work at
the start of the process, but it offers
performance, security, and integration
(schema-on-write).

Data Quality

Any data that may or may not be curated
(such a raw data).

Highly curated data that serves as the
central version of the truth.

A Data Lake is ideal for the users who
indulge in deep analysis, like Data
Scientists, Data Engineers, and Data
Analysts.

A Data Warehouse is ideal for operational
users like Business Analysts because of
being well structured and easy to use and
understand.

Price & Performance

Foﬁ$05

The storage cost is relatively low,
compared to a Data Warehouse, and
querying results is better.

The storage cost is high, and querying
results is time consuming.

Accessibility

QC

A Data Lake has few constraints and is
easily accessible. Data can be changed and
updated quickly.

A Data Warehouse is structured by design,
which makes it difficult to access and
manipulate.
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Bi AI’Ch Iitecture Do we really need something new
here? Certainly, YES
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Data Governance (Architecture, Metadata, Data Quality, Security ...) & Infrastructure (Bl Tools, Cloud, DBMS, ]

I Orchestration (Data Lake) Orchestration (Applications)

Data Sources:
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Web scrapping

No sql db
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Sandbox Application < Advance analytics

Word documents
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Data Lake Tools

Orchestration (Data Lake

tration (Applicat

Data Sources:

=~ Relational db

Streaming Standardized | ELT CLeansed
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Data Lake Tools

Raw Storage
Raw storage is the basis of a data lake. It must support large volumes of data in a variety of formats (structured, semi-structured and
unstructured).

» Amazon S3 (Simple Storage Service): One of the most popular services for data lake raw storage due to its scalability,
cost-effectiveness and integration with other tools.

» Azure Data Lake Storage (ADLS): Designed specifically for data lakes in the Azure ecosystem.
Google Cloud Storage: A scalable and highly durable service for storing data in Google Cloud data lakes.

DFS (Hadoop Distributed File System): Traditionally used in on-premise data lake implementations.

Data Sources:

=5 Relational db
Streaming
“) Social media
1 Web scrapping

#J) Nosqldb

Photos

Sandbox Application - Advance analytics

2 Word documents

Operationalized Data

& Pdf documents v
Master Data Science
Sy gtpwardghlp
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Data Lake Tools

Data Processing Tools

Tools for processing large-scale raw data and transforming it into useful formats for analysis.

» Apache Spark: A powerful framework for distributed and scalable data processing.

» Apache Hadoop: Offers an ecosystem for batch processing using MapReduce.

» Apache Flink: Ideal for real-time data processing.

» Databricks: Unified platform based on Apache Spark for data processing and machine learning.
* Google Dataflow: A managed service for real-time and batch stream processing.

Orchestration (Data Lake)

Data Sources: c
== Relational db
Streaming Standardized | ELT ClLeansed
) Social media
(1 Web scrapping

#) Nosql db
Photos

Sandbox Application Advance analytics
Word documents PP )

A Pdf documents |2 Operationalized Data
Master Data Science
e
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Data Lake Tools

Data Governance and Catalogue
Tools for cataloguing, organising and applying security and governance policies to data.

» Apache Atlas: An open-source framework for data governance and metadata management.
» AWS Lake Formation:A tool for creating, managing and protecting data lakes on AWS.

» Azure Purview: A data governance service for organising and cataloguing data in Azure.

+ Collibra: Commercial tool for data governance and cataloguing.

 Alation: Popular for data cataloguing and discovery.

Orchestration (Data Lake) Orchestration (Applications)

Data\Sources: D
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Strearqing Standardized | ELT ClLeansed
) Social media
(1 Web scrapping

#) Nosql db

Photos

Sandbox Application Advance analytics

Word documents

Operationalized Data
Science

A Pdf documents

Master Data
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Data Lake Tools

Data Integration (ETL/ELT)
Tools for extracting, transforming and loading data into the data lake.

» Apache Nifi: Designed for data flow automation and real-time integration.
» Talend: Robust platform for data integration and ETL.

» Informatica: Traditional tool for ETL in business environments.

tran: Ideal for automated data synchronisation between systems.

» Google Cloud Data Fusion: For data integration based on the Google Cloud ecosystem.
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Data Lake Tools

Query and exploration tools
Technologies for querying and exploring data directly in the data lake.

» Presto/Trino: Distributed query engines, optimised for SQL queries directly on the data lake storage.

» AWS Athena: Serverless service that allows SQL queries to be executed directly on Amazon S3.

Google BigQuery: An integrated data warehouse that also works as an interface to data lakes.
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Data Lake Tools

Data Analysis and Visualisation
Tools for analysing and presenting data stored in the data lake.

» Tableau: Popular for creating dashboards and interactive visualisations.
Power BI: Microsoft tool widely used for data visualisation.
. e Superset: An open-source alternative for data visualisation.

* Qlik Sense: Offers integration with data lakes for analysing data.

Orchestration (Data Lake) Orchestration (Applications)
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Data Lake Tools

Machine Learning and Artificial Intelligence
Platforms for creating and training machine learning models using data in the data lake.

» Apache Mahout: Framework for distributed machine learning.
» TensorFlow and PyTorch: Widely used libraries for building and training Al models.
AWS SageMaker: Managed platform for building, training and deploying machine learning models.
. ure Machine Learning: Managed service for machine learning in the Azure ecosystem.
» Google Al Platform: For building and deploying Al models in Google Cloud.
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Data Lake Tools

Orchestration
Tools for managing workflows and data pipelines in the data lake.

» Apache Airflow: Open-source tool for orchestrating data pipelines.

Luigi: Another open-source tool for orchestrating tasks.
odern solution for orchestrating workflows.

* AWS Step Functions: orchestrating services and pipelines in the AWS ecosystem.

Orchestration (Data Lake, Orchestration (Applications)
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« Relational Database ACID characteristics

Atomicity, Consistency, Isolation, Durability

VS

« No SQL — Not Only SQL BASE characteristics

Basically Available, Soft state, Eventually consistent
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« Relational Database ACID characteristics

Atomicity Assure that a transaction COMPLETELY succeeds or COMPLETELY fails (power
failures, errors, crashes, ...)

Consistency Transaction won’t put the database into an invalid state (constraints, cascades,
integrity, triggers, ...)

Isolation When multiple transactions occur at the same time, they will force the database into
the same state as if they had been run one at a time (locks, ...)

Durability Once a transaction has been committed, the database will hold that state even in
the event of an outside event such as a power loss or error (volatile memory, ...)

The ACID properties, in totality, provide a mechanism to ensure the correctness and
consistency of a database in a way such that each transaction is a group of operations
that acts as a single unit, produces consistent results, acts in isolation from other
operations, and updates that it makes are durably stored.

@Eduardo Rodrigues
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« Benefits of Relational Databases

» Designed for all purposes

» ACID

» Strong consistancy, concurrency, recovery
» Mathematical background

» Standard Query language (SQL)

» Lots of tools to use with i.e: Reporting services, entity
frameworks, ...

@Eduardo Rodrigues
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« Benefits of Relational Databases

» Designed for all purposes

» ACID

» Strong consistancy, concurrency, recovery
» Mathematical background

» Standard Query language (SQL)

» Lots of tools to use with i.e: Reporting services, entity
frameworks, ...

OR AC I_E’ PostgreSQL
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- RDBMS Performance is not good enough for all purposes ...

Salary list — Relavonal ditabase

~
e Requirement of application

Most Web apps

Performance

Social Network

-

Location-based services

-

L J

Data complexity
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e ...and

] Relational databases were not built

for distributed applications. Era of Distributed

Computing

Because... cdcdsd

O Joins are expensive /\ b
. Hard to scale horizontally W

O Expensive (product cost, hardware, N CAC AL
Maintenance) NS o O &
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It’s weak in: v i

U Speed (performance)
J High availability
W Partition tolerance
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 Big Data Technologies used to implement Data Lakes

« NoSOQL Big Data systems

v' designed to take advantage of new cloud computing architectures,
avoiding the complex schemas of RDBMS.

« Massively Parallel Processing (MPP) database systems and
MapReduce

v provide analytical capabilities for retrospective and complex analysis
that may touch most or all of the data.
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No SOL — Not Only SQL

A category of “recently” introduced data storage and retrieval technologies
not based on the relational model and employing less constrained
consistency

* NoSQL doesn'’t really mean that there isn’t SQL available but rather the
backend database doesn’t follow the relational model.

* No-SQL databases refer to high-performance, non-relational data stores.
They excel in their ease-of-use, scalability, resilience, and availability
characteristics.

* Instead of joining tables of normalized data, NoSQL stores unstructured
or semi-structured data, (often in key-value pairs or JSON - JavaScript
Object Notation - documents).
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No SQL — Not Only SQL Advantages
« Schema less / Flexible Redli w:

HBASE Cassandra

sriak

210

e Can handle structured, semi-structured, and Ll
unstructured data with equal effect .mo

« Supports schema on read, avoiding of up-
front schema design

Cablnet m
+ Allows fast development / easy to use Cou M
» Horizontal scaling \1_“/
Calarls\LJj Profect Voldemort

E{membase

 Largely open source
* Not ACID compliant!

« BASE - Basically Available, Soft state,
Eventually consistent

* No single point of failure Document Model

Collection [ “Things")

* Most of considerations are done in
application layer

- Gather all items in an aggregate (ex: :

document) / Fast queries \\\___./""
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« NoSQL BASE characteristics

Basic Avalability

Soft state

Eventual consistency

Focused on the availability of data even in the presence of multiple failures.
Achieves this by using a highly distributed approach to database
management.

BASE databases abandon the consistency requirements of the ACID model
pretty much completely. One of the basic concepts behind BASE is that data
consistency is the developer's problem and should not be handled by the
database.

The only requirement that NoSQL databases have regarding consistency is
to require that at some point in the future, data will converge to a consistent
state, although no guarantees are made. ACID requirements that prohibits a
transaction from executing until the prior transaction has completed, keeping
a consistent state, are completely abandoned in BASE.

BASE provides less assurance than ACID, but it scales very well and reacts well to rapid data

@Eduardo Rodrigues
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No SQL — There are disadvantages as well

F_R@dls H6): T

HBASE Cassandra

.mongoDB sriak

No standardization rules
More limited query capabilities

RDBMS databases and tools are
comparatively more mature and accepted

It does not offer any traditional database
capabilities, like consistency when multiple

transactions are performed simultaneously.

When the volume of data increases it will
become more difficult to maintain unique
values as keys

Doesn’t work as well with relational data

The learning curve is stiff for new
developers

Open source options so not so popular for
enterprises.

Tokyo
Cablnet #1592

CouchDB M
Scalarlsw Project Voldemort

1@ Neogj L{membase

Document Model

Collection [ “Things")
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No SQL — Aggregate Data Models

NoSQL databases are classified in four major
datamodels:

Document
. mongoDB e e column..
* Key-value 'Y famil
Couhos (
° DOCU me nt @Cassandra
* Column family HBASE

*® Neosj

@  NOSQL for the Enterprise

* Graph

. 4Project Voldemort
VST (005
éiraph L)

Each DB has its own query language
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Consider a NoSQL datastore when:

Consider a relational database when:

You have high volume workloads that
require predictable latency at large scale
(e.g. latency measured in milliseconds
while performing millions of
“transactions” per second)

Your data is dynamic and frequently
changes

Relationships can be de-normalized data
models

Data retrieval is simple and expressed
without table joins

Data is typically replicated across
geographies and requires finer control over
consistency, availablity, and performance

Your application will be deployed to
commodity hardware, such as with public
clouds

@Eduardo Rodrigues

Your workload volume generally fits within
thousands of transactions per second

Your data is highly structured and requires
referential integrity

Relationships are expressed through table
joins on normalized data models

You work with complex queries and reports

Data is typically centralized, or can be
replicated regions asynchronously

Your application will be deployed to large,
high-end hardware
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Data Lake Architecture

Orchestration (Data Lake) : Orchestration (Applications)

Data Sources: Archive

==| Relational db

Streaming Standardized | ELCT ClLeansed

Offload

Social media

Web scrapping

No sql db 1
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What do you think when you hear “Sandbox”?

o Sandboxes are places to play where
»The sand and box are provided

»You bring your own toys
»What you create is temporary
»What vou learn can be transferred
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What do you think when you hear “Sandbox”?
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What do you think when you hear “Sandbox”?
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Bl Sandbox - the challenge

« Often, the business has not had an opportunity to work with
selected data, so can't clearly define metrics and Bl reports properly.

« Another issue is the difficulty of integrating external data with data in
an existing data mart. In short, the traditional approach doesn’t work
for these cases, nor does it work for one-off exploratory initiatives due
to the long development time and cost involved for what is essentially
“throw away.”
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Bl Sandbox - purpose:

A data sandbox is primarily explored by data science teams that obtain
sandbox platforms from stand-alone or external data, data marts, logical
partitions in enterprise data warehouses, or selected partitions of data
lakes.

Objectives:

» Facilitate short term ad-hoc exploratory analysis

 Remove roadblocks to user self-service

« Allow external and/or private data integration

» Avoid the creation of unmanaged spreadsheets based data on user desktops
* Increase partnership between IT and Business
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Big Data

Questions
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